Int. J. Heat Mass Transfer. Vol. 14, pp. 377-385. Pergamon Press 1971. Printed in Great Britain

STABILITY OF LIQUID FLOW DOWN A HEATED

INCLINED PLANE

S. GEORGE BANKOFF*
Consultant, Reactor Safety Div. Argonne National Laboratory, Argonne, Illinois, U.S.A.

(Received 8 April 1970 and in revised form 15 May 1970)

Abstract—The Yih-Benjamin analysis of the stability to small surface perturbations of a thin liquid film

flowing down an inclined wall is extended to take into account the effects of evaporation or condensation.

Evaporation destabilizes the film. With vertical walls the flow is thus unstable at every Reynolds number

under heating, but exhibits a critical Reynolds number under cooling. Above a critical heat flux the esti-
mated time to develop thin spots decreases as the fourth power of the evaporation rate.

NOMENCLATURE
A, dimensionless constant ;
¢=c,+ic;, complex wave velocity;
d, mean film thickness;
F Froude number;
I, pressure amplitude ;
. acceleration due to gravity ;
k, liquid thermal conductivity;
Lyo- length for formation of a thin
spot;
P, steady dimensionless pressure ;
P dimensionless pressure;;
R, Reynolds number ;
R, critical Reynolds number ;
qs wall heat flux ;
S, dimensionless surface tension,
equation (18);
T, temperature ;
t, time ;
tp estimated time for film thinning;
U, normalized steady velocity in
X-direction;
i, velocity in X -direction ;
Uy, dimensionless velocity in X-
direction;
7 velocity in Y-direction;
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&,

B,
ﬂlv

dimensionless velocity in Y-
direction;

distance in direction of mean
flow;

X/d;

distance from mean surface posi-
tion;
Yid.

wave number ;

angle of inclination with hori-
zontal ;

equivalent angle of inclination,
equation (46);

PelP;

dimensionless heat flux term,
equation (43);

dimensionless parameter, equa-
tion(51);

Laplacian operator;
dimensionless  initial
wave amplitude;;
surface displacement [ dimension-
less];

dimensionless temperature :

heat of vaporization ;

kinematic viscosity ;

surface



o, liquid density ;

Py vapor density ;

a, surface tension ;

1, dimensionless time ;

Ty growth time ;

Q. stream function perturbation am-
plitude ;

/3 stream function ;

w, dimensionless parameter, equa-
tion (24).

Subscripts

a, spatial average ;

c, critical ;

e, evaporative ;

s, surface ;

w, wall:

0, absence of heating.

Superscripts

’ perturbation quantity ;

* most dangerous wave (greatest
growth rate).

1. INTRODUCTION

THE STABILITY of a thin liquid film adhering to a
heated wall is of practical importance in several
applications. One example can be drawn from
the field of sodium-cooled fast reactor safety
analysis, where, as the result of a hypothetical
accident involving either loss of coolant flow
or a power excursion, rapid formation of a vapor
slug takes place, which expels liquid from the
coolant channel. A thin film of residual liquid
will be left adhering, at least for short times, to
the wall [1]. Calculations [2, 3] have shown
that the stability of this film crucially affects the
rate of expulsion. In particular, the time for
breakthrough of vapor out of the core section
may be an order of magnitude greater when the
liquid film is absent than when it remains on the
wall throughout the expulsion.

The only sodium film measurements presently
available are those of Spiller et al. [1], who
subjected a stagnant column of liquid to
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transient heating, and observed film thick-
nesses of 0°07-025 mm. A simple calculation
shows that films of this thickness attain their
steady-state drainage velocity profiles in times
of the order of 1072 s, whereas the total expul-
sion occurs in times of the order of 0'1 s. Clearly,
then, one may neglect the initial period during
which the velocity profile is being developed, and
concentrate instead upon the stability of the
sodium film as it flows steadily down the heated
wall. The purely fluid-mechanical problem, in
the absence of heat transfer, is well-known,
having been studied first by Yih [4] who gave
numerical solutions, and then by Benjamin [5].
The latter obtained analytical neutral-stability
curves, which established that free-surface flow
down a vertical plane is unstable for all Reynolds
numbers.

In a later paper Yih [6] provided a perturba-
tion procedure which is considerably simpler
than Benjamin’s power-series expansion, and
thereby extended the problem in several sig-
nificent ways. We follow here the general frame-
work provided by Yih in considering the
combined fluid-mechanical and heat transfer
problem. Because of the heat flow from the wall,
vaporization will occur at the free liquid surface.
If the effects of the temperature variation in the
liquid on the liquid physical properties are
ignored, it is clear that the effect of the heated
wall will appear only in the pressure boundary
condition at the free surface, rather than in the
equations of motion. Here it will have a de-
stabilizing effect, as can be seen from the follow-
ing simple considerations. The instantaneous
vaporization rate will be greater at the troughs.
rather than at the crests, of a surface wave, since
the film is thinner at these points. The vapour
leaving normal to the surface exerts a reactive
pressure on the liquid, which is therefore larger
at the troughs than at the crests, and hence
tends to increase the wave amplitude.

A further extension of the prior analyses
considers the rate of growth of the most danger-
ous wavelength. From this one can estimate the
fractional change, due to heating, in the time for
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the film to develop thin spots. The second stage
of film break-up involves the wettability of the
wall, as evidenced by the liquid contact angle,
and hence requires a different analysis. It is of
some interest that Freon 113 is a considerably
better simulant of sodium film thinning than
water, providing the heat flux is reduced by an
order of magnitude.

2. FORMULATION OF THE PROBLEM

Consider a liquid film of mean thickness d,
draining steadily down a heated plane inclined
at an angle B with the horizontal. Let X be the
distance in the direction of mean flow, and Y
the distance from the mean surface position,
with & and 7 the corresponding velocity com-
ponents. The steady velocity profile (with the
assumption of zero surface shear stress) is thus
given by

Uy) =31 - y?) (1)
where y = y/d U 2 ifi, is the normalized steady
velocity. The normalization is performed with
respect to the average velocity parallel to the
wall. Letting v be the kinematic viscosity, it is

readily shown that
2 .
5 _ gd’sinp 2
3v

Defining the Reynolds number and Froude
number by

i, d i,
R = ot F= " (3)
itisclear that
3F? = Rsin g, @)

so that only the Reynolds number can be chosen
independently.

Consider a small surface wave, of amplitude
nd, where # is the normalized displacement of
the surface from its mean position. The veloci-
ties, distances, pressures and time can similarly
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be made dimensionless be defining

u,v X, Y
(uxaU1)=(_ )§ (x,y)=(—_‘—2
i, d
_r _
pl—pﬁza T= d (5)

The equations of motion and of continuity are
then:

A L LT}
at Lox Loy
_ dpy  sinf 1
“& TP gt ©
ot Lox 1oy
_ Opy ,cosp 1
=% 72 +RAU1 7
Ou, 0Ov,
5x_+_67_0' 8)

Let the steady (dimensionless) pressure be P
everywhere. The presence of the surface wave
implies a perturbation of the steady flow field
such that

u,=U+u; vu=v; p=P+p. 9
Defining the perturbation stream functions by
u' =y, vV =Y, (10)

and substituting equations (9) and (10) into
equations (6) and (7) [equation (8) is automatic-
ally satisfied], one obtains, upon neglecting the
products of perturbation quantities :

1
‘jl)’t + Ulpxy - Uy!ﬁx = - p; + ﬁA!//y (11)
, 1
lﬁxr + U'ﬁxx = py + 'EA'l’x (12)
At the bottom of the film (y = 1)
W=y, =0; v=—y,=0 (I3)
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At the free surface, the vanishing of the shear
stress implies that

Ooy | Oy _

éx  dy
Let ¥, be the velocity component of the vapor
leaving the surface due to evaporation, and o be

the surface tension. The pressure condition at
the free surface then requires that

2 2
(-pl + 70,2 + —wa—v—‘)pﬁaz +6—-—--—66§:7;ﬂ= 0 (15)

(14)

R dy
where
,
a=Pe o, e (16)
p i,

v, which is the ratio of the vapor to the liquid
density, is normally quite small, so that the
reactive pressure term due to evaporation might
be considered to be small. However, at suffi-
ciently high heat fluxes, it will be shown to be
of decisive importance. In dimensionless form,
equation (15) may be written

2 0v oy
— " 2 ——1 b
py + 0. + R 3y + s&x2 0 an
where
g
S = odi? (18)

Equations (14) and {17) are strictly correct
only at the free surface (y = #); and in order to
obtain boundary conditions at the fixed eleva-
tion, y = 0, we take advantage of the fact that
quadratic terms in the Taylor series expansions
can be neglected, by virtue of the assumption of
n < 1. Equations (14) and (15) then become

diu

~fn+‘//yy—¢’xx:0

& (19)

and
—P — Py —p + y5,° + 2y0,0,
2
- _ﬁl/’x_v + Sﬂxx =0 (20)
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where v, = 0, + v}, and the steady pressure and
pressure gradient at the surface of the undis-
turbed flow are determined by the evaporative
momentum flux and gravity forces, respectively:

PO) = 5,*:  Py0) :C%Szé- (21)

Inserting equation (21) into equation (20), we
obtain the perturbation pressure condition at
y=0:

cos f8
FZ

We turn now to the heat flow probiem.

b)
n + p — 2yb,0, + ﬁt//xy -~ Sne = 0. (22)

s
Tw - T:
of the liquid, and T,, and T are the (constant)
temperatures of the wall and surface, respec-
tively, the instantaneous evaporative flux can
be related to the surface temperature gradient
by

Letting § = where Tis the temperature

Oyly-n = — wlb. + 1) (23)
where
_ eyl

and 4, k are the heat of vaporization and liquid
thermal conductivity, respectively. For the
steady flow the surface temperature gradient is
given by

O,ly=0 = — w0, (25)

which implies, together with equation (23), that
] i y=n

v, = —8 L~ —B (26)
0@ o =0

In fact, the temperature field will be disturbed
by the flow perturbation, but, as can be seen
from equation (26), this constitutes a second-
order correction on the evaporative flux, and
may be neglected. The steady surface tempera-
ture gradient will be inversely proportional to
the film thickness, so that

Olymn o, 1

~ 2n
gy|y=0 1—n



STABILITY OF LIQUID FLOW DOWN A HEATED INCLINED PLANE 381

Combining equations (25}27), one obtains

1
v, = Ee( - 1) ~ . (28)
l—n
Equation (22) thus becomes
cos . 23 2

Now, any Fourier component of the dis-
turbance can be written in the form

¥ = oly)exp [inlx — c1)] (30)
p' = fy)exp [ialx — c7)) (31)
n = pexp [id(x — ¢7)] (32)
where

c=c + i (33)

is a complex wave velocity, and

2md

=— (34)

is a dimensionless wave number.
The kinematic condition at the free surface

_lllx =1+ Uﬂx

@(0) = u[c — U(0)] (36)

where, from equation (1), U(0) = 3/2. Letting
¢ = ¢ — 3, wehave

(35)
leadsto

#(0)
2

Ho) = (37

The equations of motion (11) and (12), upon
substituting (30}(32), and eliminating the pres-
sure term, yield the well-known Orr-Sommer-
feld equation:

0" — 202" + atep
= iaR[(U — ¢)(¢" — a*¢) — U"9]
with boundary conditions from (13)and (19)
(i) ¢(1)=0 (39)
(i) (1) =0 (40)

(iii) x(0) = @"(0) + (a2 - %)(p(O) =0 (41)

(38)

since U(0)=3; U,0) =0 and U,(0) = —3.
The fourth b.c. is obtained from (29), noting that
cos B/F? = 3cot B/R:

a@(0) (3 cot B + 2> SR — 20R)

+ oRc" + 3ai) @'(0) — i"(0) = O (42)
where
N 2
5ol _Paf d:_ 43)
® P \A,p i,

and g, is the wall heat flux.* The case 6 =0
corresponds to the Yih problem. There is thus
an extra degree of freedom compared to the
problem considered by Yih and by Benjamin,
since

¢;=c{R,F,0,8) =0 (44)

gives the neutral stability curve in the (R, F, a, J)
hyperplane.

3. THIN FILM APPROXIMATION
For the extremely thin films quoted above
[1], it is clear that surface tension will quickly
damp out waves whose dimensionless wave
number is of order unity. Hence, we need con-
cern ourselves only with long waves, such that
o < 1. Considering a to be a small perturbation

* An examination of the right hand side of equation (43)
shows that & is only very weakly affected by deviations of
the liquid surface temperature, T;, from saturation, due to
the evaporating or condensing mass flux. In addition,
variations in surface tension with x (Marangoni effects) have
been neglected in this analysis. To justify this, suppose that
S, # 0. Then equation (22) will contain an additional term
on the left hand side whichis —S 2,

The linearized non-equilibrium transport equation be-
comes, at every surface point,

A0|y=n = 0YJy='l = 6y|y=o(1 - 'l)—1

where A is a dimensionless constant involving the accom-
modation coefficient, the molecular weight, the saturation
temperature and the ambient pressure. This implies that

9x|y=n =4 10y|y=o Nx

and hence that S,7, = S¢8,|,—, . is 0(2?), in view of equation
(32). There will thus be (as might be expected) an additional
cubic term in equation (47) arising from surface tension
effects, which, to the present order of approximation, may
also be neglected in determining the critical Reynolds
number.



382

parameter, the zeroth-order approximation of
equations (38){42) becomes

b0 =0
() goll) =0
(i) (1) =0
(i) 40— pe0) =0 [ 145
() PL(0)=0

Defining an equivalent angle of inclination. 8,
by

3cotfi, = 3cotf — 20R (46)

the problem reduces to that considered by Yih.
We can therefore employ his result directly:

6aR
= 28 %(3 cot B, + a*SR)

5 (47)

where ¢;; = 0 is the first-order neutral stability
curve. For a < 1, we can neglect the cubic term
in determining the critical Reynolds number
R, :

cot f§

R, ~ .
$+ %0

c

(48)

Above this Reynolds number some disturbance
will grow. Hence, for vertical walls (f = n/2),
the flow is always unstable. This is not surpris-
ing, since as can be seen from equation (48),
surface evaporation is always destabilizing. On
the other hand, if the direction of heat flow were
reversed, so that § < 0, representing a condens-
ing heat flux, it is interesting to note that one can
unconditionally stabilize a draining film, pro-
vided p < /2.

We consider now the most dangerous wave-
length, in order to obtain an estimate of the
time for thin spots to appear in the film. This is
defined as the real root of

—q{occu) =0 (49)
da

which, upon substituting equation (47), gives for
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for the greatest rate of amplification :

3(6,R — cos ,B')j

a¥e,* = SR (50)
where
d,=%+3%8 (51
Let
n* = gexp [ia*(x — c*1)] (52)

where ¢ > 0 is the dimensionless initial surface
wave amplitude. An estimate of the growth time
for the wave amplitude to be comparable to the
film thickness is then obtained by setting
n*(t,) = 1, whence

. -lne_ —48RIn¢
T a*e,* 3(8'R — cot B

(53)

This estimate should be considered to be only
a rough guide, since it involves an extrapolation
into a range where the neglected quantities are no
longer necessarily small.

In physical variables, this becomes for verti-
cal walls:

o= 2’
§+2Bﬂ 4s
5 3 p\4pg,

For moderate heat fluxes, the second term in the
denominator can be neglected, which corres-
ponds to the zero heat flux case. However, once
q, exceeds a critical value. ¢, given by

Gse _(23)5
AgPgtta  \5p,
the growth time falls drasticaily, and in fact,
decreases as the fourth power of the applied heat
flux.

Defining now the estimated time for film

thinning in the absence of wall heating by 1,
equations (54) and (55) become

t 271-2
[
tyO sc

(54)

(55)

(56)
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where

ov
Lo = g—g (;d—za_?—) Ine (57)
For condensation, rather than evaporation, the
sign of the second term on the right-hand side
of equation (56) would be reversed, so that the
critical condensing heat flux would here cor-
respond to complete stabilization.

4, ILLUSTRATIVE CALCULATIONS

To illustrate the magnitude of these effects,
we present some simple illustrative calculations.

Consider a liquid film flowing steadily down
a vertical surface at atmospheric pressure, with
the free liquid surface being at the saturation
temperature as the result of a uniform wall heat
flux, g, Let d = 001 ¢m, and ¢ = 0-01. The
following table, based upon equations (54)(57),
compares the behavior of three different liquids:
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[7]. They found a minimum stable thickness
of 0-014 cm for an annular film of water on the
inside of an unheated glass tube (1'1 cm id.),
which is in good agreement with the result of
Norman and Mclntyre (8] for a copper pipe.
The test section length in the former study was
about 39 cm, so that the agreement with the
calculated value of 35 cm is clearly fortuitous,
in view of our arbitrary assumption of ¢ = 001
and our extrapolation beyond the small-pertur-
bation range. The dependence upon the initial
dimensionless surface wave amplitude is, how-
ever, logarithmic, so that decreasing ¢ by a factor
of ten increases L,, by only 50 per cent.

One can thus postulate that the film breakup
occurs in two stages: (1) an initial stage in which
thin spots are produced in the film by growth of
an unstable surface wave, (2) a breakup stage in
which liquid is displaced from the solid surface.
Fhe contact angle, which is a measure of the

Table 1.
Growth time, adiabatic Critical heat flux, i, Lyo2it,
Liquid walls, 44 (5) Qs (cal/cm?) (cm/s) (cm)
Freon-113 625 x 1073 54:2 147 92 x 1074
Sodium 27 x 1073 530 312 83 x 107¢
Water 55 113 64 35

Freon-113 is clearly a much better simulant
for sodium film breakup than water, provided
the heat flux is reduced by a factor of approxi-
mately ten. The reason for the large differences
in the wave growth time between water and the
other fluids can be ascertained from equations
(2) and (57), where it is seen that ;o ~ v*. It is
instructive to compare the calculations of
Table 1 for the length for full development of the
wave amplitude under adiabatic conditions,
Ly, with the recent results of Simon and Hsu

relative surface energies, is clearly of considerable
importance in the second stage, whereas it is
irrelevant in the first. The second stage may
proceed by means of a minimization of the sum
of surface and kinetic energies, as suggested by
Hartley and Murgatroyd [9], and may lead to
quite asymmetric liquid distribution, as noted
by Simon and Hsu [7].

From Table 1 it is seen that thin-spot forma-
tion in either Freon-113 or sodium is very rapid.
On the other hand, with well-wetted surfaces
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the film appears to be quite stable, as indicated
by the depressurization studies of Grolmes and
Fauske [10] with Freon 113 and of Spiller et al.
[1] with sodium.

5. CONCLUSIONS

It has been shown that evaporation from the
surface of a falling liquid film has a destabilizing
effect, while condensation has the opposite
influence. For every angle of inclination, § < n/,,
of a heated wall, there is a corresponding angle
of inclination, §,, given by equation (46), of an
unheated wall, for which the stability behavior
and amplitude growth rates are exactly equal at
all Reynolds numbers, provided that the film
thickness is small compared to the wave length.
One can estimate thereby, in a very rough way,
the minimum time for formation of thin spots
in the liquid film, which is certainly a lower
bound for the lifetime of the unbroken film. In
the second stage a dry spot may or may not be
formed, depending upon wettability considera-
tions. Thisstage is probably quite rapid, although
very little evidence is presently at hand.
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STABILITE DE L’ECOULEMENT D'UN LIQUIDE LE LONG D'UN PLAN INCLINE
CHAUFFE

Résumé —On étend ’analyse de Yih-Benjamin, concernant la stabilité des perturbations a la surface d’un

film liquide mince, s’écoulant le long d’une paroi inclinée pour considérer les effets d’évaporation ou de

condensation. L’évaporation déstabilise le film. Avec des parois verticales, I'écoulement est alors instable

sous ’échauffement pour tout nombre de Reynolds, mais montre un nombre critique sous le refroidisse-

ment. Au-dessus d’un flux critique de chaleur le temps estimé pour développer des taches fines décroit
comme la quatriéme puissance du taux d’évaporation.

STABILITAT EINER FLUSSIGKEITSSTROMUNG AN EINER BEHEIZTEN GENEIGTEN
PLATTE

Zusammenfassung—Die Yih-Benjamin-Analysis iiber die Stabilitit eines Fliissigkeitsfilms, der an einer
geneigten Wand herabfliesst, wird fiir kleine Storungen der Flache erweitert, um den Einfluss von VerQamp-
fung und Kondensation zu beriicksichtigen. Verdampfung zerstort den Film. An senkrechten Wanden
wird demnach bei jeder Reynolds-Zahl die Strémung beim Aufheizen instabil, wahrend bei K Ghiung eine
kritische Reynolds-Zahl auftritt. Oberhalb einer kritischen Wirmestromdichte nimmt die Zeit fir die
Entwicklung einer Storstelle mit der vierten Potenz des Verdampfungsverhltnisses ab.
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YCTONYMBOCTb NOTOKA JHUAKOCTH HA HATPETON
HAKJIOHHON TIJIOCKOCTH

Ammoramua—NMeron n-BenxaMuna 1A aHAINBA YCTORYMBOCTH NPH MAJIKX BOMYIMEHUAX
Ha MOBEPXHOCTA TOHKOR IJICHKM MUIKOCTH, CTEKalollel M0 HAKJIOHHOM cTeHke, 0600Iaercs
ANA yveTa BIMAHUA HCHApeHHA Wian KoHpeHcauuu. Mcnapenwme Hapymaer ycrof4mBOCTB
nueHku. Takum oGpasoM, B Ciyyae BePTHKAIBHHX CTEHOK IPY HArpeBAHUU MOTOK ABJIAETCH
HeCTAOMOHADHEM NpH JIOGHX YHciIax PeltHoibica, 4 NPU OXJIMKIEHUNA ITOABIAETCA KPHTH-
YecKoe ucao Peftnonbca. BHe 3HAYEHMA KPUTHYECKOrQ TEIJIOBOr'O MOTOKA PACCIMTAHHOE
BpeMA, HeO6XoaMMOe IJIA MOABJEHMA TOHKHMX IATEH, YMEHBIIAeTCA NPONOPIHOHAIBHO
YeTBEpTOl CTENEeHN CKOPOCTH MCIIAPEHNA.
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