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INCLINED PLANE 

S. GEORGE BANKOFF’ 

Consultant, Reactor Safety Div. Argonne National Laboratory, Argonne, Illinois, U.S.A. 
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Abstxae-The Y&Benjamin analysis of the stability to small surface perturbations of a thin liquid film 
flowing down an inclined wall is extended to take into account the effects of evaporation or condensation. 
Evaporation destabilizes the film With vertical walls the flow is thus unstable at every Reynolds number 
under heating, but exhibits a critical Reynolds number under cooling Above a critical heat flux the esti- 

mated time to develop thin spots decreases as the fourth power of the evaporation rate. 

NOMENCLATLJRE 019 
A, dimensionless constant ; 
c = c, + ic,, complex wave velocity ; X, 
d, mean film thickness ; 

; 

Froude number ; x, 
pressure amplitude ; r: 

Lk, 
acceleration due to gravity; 
liquid thermal conductivity ; Y, 

L hO- length for formation of a thin 

spot ; Greek letters 

p, steady dimensionless pressure ; 

Pl, dimensionless pressure ; ; 
R Reynolds number ; 

RC9 critical Reynolds number ; B17 
4s, wall heat flux ; 
S, dimensionless surface tension, 

equation (18); ; 
?: temperature ; 

t, time ; 6 13 

b estimated time for frhn thinning ; 

u, normalized steady velocity in > A, 
X-direction ; 5 

2, velocity in Xdirection ; 

Ul? dimensionless velocity in X- q, 
direction ; 

v, velocity in Y-direction ; 8, 
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dimensionless velocity in Y- 
direction ; 
distance in direction of mean 
flow ; 
Xld; 
distance from mean surface posi- 
tion ; 
rid. 

wave number ; 
angle of inclination with hori- 
zontal ; 
equivalent angle of inclination, 
equation (46) ; 

PglP ; 
dimensionless heat flux term, 
equation (43); 
dimensionless parameter, equa- 
tion (51); 
Laplacian operator ; 
dimensionless initial surface 
wave amplitude ; 
surface displacement [dimension- 
less] ; 
dimensionless temperature : 
heat of vaporization ; 
kinematic viscosity ; 
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Subscripts 
a, 

c, 

e, 

s, 

o”, 

Superscripts 
I 

; 
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liquid density ; 
vapor density ; 
surface tension ; 
dimensionless time ; 
growth time ; 
stream function perturbation am- 
plitude ; 
stream function ; 
dimensionless parameter, equa- 
tion (24). 

spatial average ; 
critical ; 
evaporative ; 
surface ; 
wall ; 
absence of heating. 

perturbation quantity ; 
most dangerous wave (greatest 
growth rate). 

1. INTRODUCTION 

THE STABILITY of a thin liquid film adhering to a 
heated wall is of practical importance in several 
applications. One example can be drawn from 
the field of sodiumcooled fast reactor safety 
analysis, where, as the result of a hypothetical 
accident involving either loss of coolant flow 
or a power excursion, rapid formation of a vapor 
slug takes place, which expels liquid from the 
coolant channel. A thin film of residual liquid 
will be left adhering, at least for short times, to 
the wall [l]. Calculations [2, 31 have shown 
that the stability of this film crucially affects the 
rate of expulsion. In particular, the time for 
breakthrough of vapor out of the core section 
may be an order of magnitude greater when the 
liquid film is absent than when it remains on the 
wall throughout the expulsion. 

The only sodium film measurements presently 
available are those of Spiller et al. [l], who 
subjected a stagnant column of liquid to 

transient heating, and observed film thick- 
nesses of 007-025 mm. A simple calculation 
shows that films of this thickness attain their 
steady-state drainage velocity profiles in times 
of the order of lo-’ s, whereas the total expul- 
sion occurs in times of the order of 0.1 s. Clearly. 
then, one may neglect the initial period during 
which the velocity profile is being developed, and 
concentrate instead upon the stability of the 
sodium film as it flows steadily down the heated 
wall. The purely fluid-mechanical problem, in 
the absence of heat transfer, is well-known, 
having been studied first by Yih [4] who gave 
numerical solutions, and then by Benjamin [5]. 
The latter obtained analytical neutral-stability 
curves, which established that free-surface flow 
down a vertical plane is unstable for all Reynolds 
numbers. 

In a later paper Yih [6] provided a perturba- 
tion procedure which is considerably simpler 
than Benjamin’s power-series expansion, and 
thereby extended the problem in several sig- 
nificent ways. We follow here the general frame- 
work provided by Yih in considering the 
combined fluid-meLhanica1 and heat transfer 
problem. Because of the heat flow from the wall, 
vaporization will occur at the free liquid surface. 
If the effects of the temperature variation in the 
liquid on the liquid physical properties are 
ignored, it is clear that the effect of the heated 
wall will appear only in the pressure boundary 
condition at the free surface, rather than in the 
equations of motion. Here it will have a de- 
stabilizing effect, as can be seen from the follow- 
ing simple considerations. The instantaneous 
vaporization rate will be greater at the troughs. 
rather than at the crests, of a surface wave, since 
the film is thinner at these points. The vapour 
leaving normal to the surface exerts a reactive 
pressure on the liquid, which is therefore larger 
at the troughs than at the crests, and hence 
tends to increase the wave amplitude. 

A further extension of the prior analyses 
considers the rate of growth of the most danger- 
ous wavelength. From this one can estimate the 
fractional change, due to heating, in the time for 
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the film to develop thin spots. The second stage be made dimensionless be defining 
of film break-up involves the wettability of the 
wall, as evidenced by the liquid contact angle, 
and hence requires a different analysis. It is of 

(u v)&!L 
19 1 

ua ’ 
(x, y) = y 

some interest that Freon 113 is a considerably 
better simulant of sodium film thinning than 

tii, 
z = -. 

water, providing the heat flux is reduced by an 
order of magnitude. 

d 

The equations of motion and of continuity are 
then : 

2. FORMULATION OF THE PROBLEM 
au, au, au, 

Consider a liquid film of mean thickness d, 

--&+Ul~+yjjy 

draining steadily down a heated plane inclined ah sin /I 1 =--+_a 
at an angle j? with the horizontal. Let X be the ax F2 + ~4 (61 

distance in the direction of mean flow, and Y 
the distance from the mean surface position, 

av, av, av, 

with ii and fi the corresponding velocity com- 
-g+“‘jy+v1ay 

ponents. The steady velocity profile (with the = ah + w -- - 
assumption of zero surface shear stress) is thus ay F2 

+ $Av, (7) 

given by 

U(y) = 31 - y2) (1) 

&L+!!Lo, 
ay 

where y = y/d Up ii/i& is the normalized steady Let the steady (dimensionless) pressure be P 

velocity. The normalization is performed with everywhere. The presence of the surface wave 

respect to the average velocity parallel to the implies a perturbation of the steady flow field 

wall. Letting v be the kinematic viscosity, it is such that 

readily shown that u1 = u + u’; 01 = v’; p = P + p’. (9) 

u 
IJ 

= gd2 sin B 
3v (2) Defining the perturbation stream functions by 

Defining the Reynolds number and Froude 
u’ = II/,; 0’ = $, (10) 

number by and substituting equations (9) and (10) into 

&4; 
equations (6) and (7) [equation (8) is automatic- 

V F=& (3) 
ally satisfied], one obtains, upon neglecting the 
products of perturbation quantities : 

it is clear that 

3F2 = Rsin/I, (4) 11/y, + W,, - u&.x = - P: + f&t (11) 

so that only the Reynolds number can be chosen 
independently. 

Consider a small surface wave, of amplitude 
II/x, + W,, = P; + $4,. (12) 

q-d, where v is the normalized displacement of 
the surface from its mean position. The veloci- At the bottom of the film (y = 1) 

ties, distances, pressures and time can similarly u’ = II/, = 0; v’ = - $, = 0. (13) 
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At the free surface, the vanishing of the shear where v, = ijf f vi, and the steady pressure and 
stress implies that pressure gradient at the surface of the undis- 

r?a, 

Z- 
+&o. 

turbed flow are determined by the evaporative 
(14) momentum flux and gravity forces, respectively : 

P(0) = ycc2 ; 
cos p 

P,(O) = $- (21) 
Let V, be the velocity component of the vapor 
leaving the surface due to evaporation, and IS be 
the surface tension. The pressure condition at 

Inserting equation (22) into equation (20), we 

the free surface then requires that 
obtain the perturbation pressure condition at 
J!=O: 

- sr/xx = 0. (22) 

where 
We turn now to the heat Ilow problem. 

(16) Letting @ = s, where Tis the tem~rature 
w s 

7, which is the ratio of the vapor to the liquid 
of the liquid, and ?,, and T, are the (constant) 

density, is normally quite small, so that the 
temperatures of the wall and surface, respec- 

reactive pressure term due to evaporation might 
tively, the instantaneous evaporative flux can 
be related to the surface temperature gradient 

be considered to be small. However, at such- ,~ 
ciently high heat fluxes, it will be shown to be Dy 
of decisive importance. In dimensionless form, 
equation (15) may be written 

where 

_p +y~2+1U1+&2!=0 
Q,dii, 

(24) 
1 e 

R ay ax2 
(17) CJJ = k(T, - ‘TJ 

where 

s=-& (18) 
a 

Equations (14) and (17) are strictly correct 
only at the free surface (y = rt); and in order to 
obtain boundary conditions at the fixed eleva- 
tion, y = 0, we take advantage of the fact that 
quadratic terms in the Taylor series expansions 
can be negIected, by virtue of the assumption of 
ri 6 1. Equations (14) and (15) then become 

d2U 
(19 

and 

and I,,, k are the heat of vaporization and liquid 
thermal conductivity, respectively. For the 
steady flow the surface temperature gradient is 
given by 

@,I,=, = - cui;, (25) 

which implies, together with equation (23), that 

9 ‘0 
Y’rl 

u:=-(3,, --N--- Y (26) 
>X”f_lW 0 )‘=O. 

In fact, the temperature field will be disturbed 
by the flow perturbation, but, as can be seen 
from equation (26), this constitutes a second- 
order correction on the evaporative flux, and 
may be neglected. The steady surface tempera- 
ture gradient will be inversely proportional to 
the film thickness, so that 
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Combining equations (25)(27), one obtains 

(28) 

Equation (22) thus becomes 

cos /I 
7 rl + tf -2$ iJ;q + f&y - Snxx = 0. (29) 

Now, any Fourier component of the dis- 
turbance can be written in the form 

$ = &) exp [i+ - CT)] (30) 

p’ = I exp [ia(x - CT)] (31) 

q = p exp [ia(x - cz)] (32) 
where 

C = C, + iCi (33) 

is a complex wave velocity, and 

2lrnd 
a=--- 

il 
(34) 

is a dimensionless wave number. 
The kinematic condition at the free surface 

-tix=rlr+ U?X (35) 
leads to 

P(O) = clcc - uo)l (36) 

where, from equation (I), U(0) = 312. Letting 
c’ = c - 3, we have 

p(0) = y. 

The equations of motion (11) and (12), upon 
substituting (30)(32), and eliminating the pres- 
sure term, yield the well-known Orr-Sommer- 
feld equation : 

* An examination of the right hand side of equation (43) 
shows that 6 is only very weakly affected by deviations of 
the liquid surface temperature, T, from saturation, due to 
the evaporating or condensing mass flux. In addition, 
variations in surface tension with x (Marangoni effects) have 
been neglected in this analysis. To justify this, suppose that 
S, # 0. Then equation (22) will contain an additional term 
on the left hand side which is --Sar 

The linearized non-equilibrium transport equation be- 
comes, at every surface point, 

AB[,=, = q,=, = Bylg=o(l - II)-’ 

cp 
,,r, - 2&P + a%p 

= iaR[(U - c) (cp” - a2p) - V’p] (38) 

with boundary conditions from (13) and (19) 

(i) #(I) = 0 (39) 

where A is a dimensionless constant involving the accom- 
modation coetficient, the molecular weight, the saturation 
temperature and the ambient pressure. This implies that 

(ii) P(l) = O (40) 

and hence that SJ* = Seex Iy = 11 nX is O(a’), in view of equation 
(32). There will thus be (as might be expected) an additional 
cubic term in equation (47) arising from surface tension 
effects, which, to the present order of approximation, may 
also be neglected in determining the critical Reynolds 
number. 

(iii) x(O) = ~“(0) + a2 - $ q(O) = 0 
( ) 

(41) 

since U(0) = #; U,(O) = 0 and U,,,(O) = -3. 
The fourth b.c. is obtained from (29), noting that 
cos p/F2 = 3cotB/R: 

q(0) (3 cot /3 + CI’SR - 26R) 

+ cr(Rc’ + 3ai) q’(O) - i@“(O) = 0. (42) 

where 

and qs is the wall heat flux.* The case 6 = 0 
corresponds to the Yih problem. There is thus 
an extra degree of freedom compared to the 
problem considered by Yih and by Benjamin, 
since 

ci = c,(R, F, a, 6) = 0 (44) 

gives the neutral stability curve in the (R, F, u, 6) 
hyperplane. 

3. THIN FILM APPROXIMATION 

For the extremely thin films quoted above 
[l], it is clear that surface tension will quickly 
damp out waves whose dimensionless wave 
number is of order unity. Hence, we need con- 
cern ourselves only with long waves, such that 
a + 1. Considering a to be a small perturbation 
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parameter, the zeroth-order approximation of for the greatest rate of amplification : 
equations (38)-(42) becomes 

C#I*“” = 0 

(i) &(I) = 0 

(ii) f&(l) = 0 

(iii) &(O) - ;;+,(O) = 0 

/ 

(45) 

(iv) 4:‘(O)= 0. 

Defining an equivalent angle of inclination. PI, 

by 

3cotfi, = 3cotfi -26R (46) 

the problem reduces to that considered by Yih. 
We can therefore employ his result directly : 

cli = y - 5(3 cot PI + c?SR) (47) 

where cli = 0 is the first-order neutral stability 
curve. For c1 4 1, we can neglect the cubic term 
in determining the critical Reynolds number 
R,: 

Above this Reynolds number some disturbance 
will grow. Hence, for vertical walls (fl = nj2), 
the flow is always unstable. This is not surpris- 
ing, since as can be seen from equation (4% 
surface evaporation is always destabilizing. On 
the other hand, if the direction of heat flow were 
reversed, so that 6 < 0, representing a condens- 
ing heat flux, it is interesting to note that one can 
unconditionally stabilize a draining film, pro- 
vided fi -C 1rj2. 

We consider now the most dangerous wave- 
length, in order to obtain an estimate of the 
time for thin spots to appear in the film. This is 
defined as the real root of 

d 
--(aCli) = 0 
da 

(49) 

which, upon substituting equation (47), gives for 

a*cIi* = 
3(6,R - cos p)2 -__ 

4SR 
(50) 

where 

Let 

r/* = E exp [ia*(x - c*z)] (52) 

where E > 0 is the dimensionless initial surface 
wave amplitude. An estimate of the growth time 
for the wave amplitude to be comparable to the 
film thickness is then obtained by setting 
Y/*(z,) = 1, whence 

-In& - 4SR.ln E 

r =-=3(6’R-cotfi)2’ Y 
M*CIi* 

(53) 

This estimate should be considered to be only 
a rough guide, since it involves an extrapolation 
into a range where the neglected quantities are no 
longer necessarily small. 

In physical variables, this becomes for verti- 
cal walls : 

For moderate heat fluxes, the second term in the 
denominator can be neglected, which corres- 
ponds to the zero heat flux case. However, once 
q, exceeds a critical value, ysC. given by 

(55) 

the growth time falls drastically, and in fact, 
decreases as the fourth power of the applied heat 
flux. 

Defining now the estimated time for film 
thinning in the absence of wall heating by t,,, 
equations (54) and (55) become 



STABILITY OF LIQUID FLOW DOWN A HEATED INCLINED PLANE 383 

where 

(57) 

For condensation, rather than evaporation, the 
sign of the second term on the right-hand side 
of equation (56) would be reversed, so that the 
critical condensing heat flux would here cor- 
respond to complete stabilization. 

4. ILLUSTRATIVE CALCULATIONS 

To illustrate the magnitude of these effects, 
we present some simple illustrative calculations. 

Consider a liquid film flowing steadily down 
a vertical surface at atmospheric pressure, with 
the free liquid surface being at the saturation 
temperature as the result of a uniform wall heat 
flux, q8. Let d = 0.01 cm, and 6 = 0.01. The 
following table, based upon equations (54)-(57), 
compares the behavior of three different liquids : 

[7]. They found a minimum stable thickness 
of 0014 cm for an annular film of water on the 
inside of an unheated glass tube (1.1 cm i.d.), 
which is in good agreement with the result of 
Norman and McIntyre [S] for a copper pipe. 
The test section length in the former study was 
about 39 cm, so that the agreement with the 
calculated value of 35 cm is clearly fortuitous, 
in view of our arbitrary assumption of E = 0.01 
and our extrapolation beyond the small-pertur- 
bation range. The dependence upon the initial 
dimensionless surface wave amplitude is, how- 
ever, logarithmic, so that decreasing E by a factor 
of ten increases J!,,,~ by only 50 per cent. 

One can thus postulate that the film breakup 
occurs in two stages : (1) an initial stage in which 
thin spots are produced in the film by growth of 
an unstable surface wave, (2) a breakup stage in 
which liquid is displaced from the solid surface. 
The contact angle, which is a measure of the 

Table 1. 

Liquid 

Freon-113 
Sodium 
Water 

Growth time, adiabatic Critical heat flu4 
walls, t,, (s) qsc (Wcm2) 

625 x lo-’ 542 
2.7 x 1O-5 530 
5.5 113 

%a L,, A i&tgo 
(w/s) (4 

_ 
147 92 x lo-‘+ 
31.2 8.3 x 10-b 
64 35 

Freon-113 is clearly a much better simulant 
for sodium film breakup than water, provided 
the heat flux is reduced by a factor of approxi- 
mately ten. The reason for the large differences 
in the wave growth time between water and the 
other fluids can be ascertained from equations 
(2) and (57), where it is seen that tea - v4. It is 
instructive to compare the calculations of 
Table 1 for the length for full development of the 
wave amplitude under adiabatic conditions, 
LhO, with the recent results of Simon and Hsu 

relative surface energies, is clearly ofconsiderable 
importance in the second stage, whereas it is 
irrelevant in the first. The second stage may 
proceed by means of a minimization of the sum 
of surface and kinetic energies, as suggested by 
Hartley and Murgatroyd [9], and may lead to 
quite asymmetric liquid distribution, as noted 
by Simon and Hsu [7]. 

From Table 1 it is seen that thin-spot forma- 
tion in either Freon-l 13 or sodium is very rapid. 
On the other hand, with well-wetted surfaces 
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the film appears to be quite stable, as indicated 
by the depressurization studies of Grolmes and 
Fauske [lo] with Freon 113 and of Spiller et al. 
[l] with sodium. 

5. CONCLUSIONS 

It has been shown that evaporation from the 
surface of a falling liquid film has a destabilizing 
effect, while condensation has the opposite 
influence. For every angle ofinclination, fl < niz, 
of a heated wall, there is a corresponding angle 
of inclination, pi, given by equation (46), of an 
unheated wall, for which the stability behavior 
and amplitude growth rates are exactly equal at 
all Reynolds numbers, provided that the film 
thickness is small compared to the wave length. 
One can estimate thereby, in a very rough way, 
the minimum time for formation of thin spots 
in the liquid film, which is certainly a lower 
bound for the lifetime of the unbroken film. In 
the second stage a dry spot may or may not be 
formed, depending upon wettability considera- 
tions. This stage is probably quite rapid, although 
very little evidence is presently at hand. 
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STABILITE DE L’ECOULEMENT D’UN LIQUIDE LE LONG DUN PLAN INCLINE 
CHAUFFE 

Rbmn&On &end I’analysc de Yih-Benjamin, concernant la stabilittt des perturbations a la surface d’un 
film liquide mince, s’ecoulant le long d’une paroi inclime pour considerer les effets d’kaporation ou de 
condensation. L’tvaporation destabilize le film. Avec des parois verticales, l%coulement est alors instable 
sous 1’6chauffement pour tout nombre de Reynolds, mais montre un nombre critique sous le refroidisse- 
ment. Au-dessus d’un flux critique de chaleur le temps estime pour developper des taches fines d&xoft 

comme la quatrieme puissant du taux d’evaporation. 

STABILIT;IT EINER FLUSSIGKEITSSTRi)MUNG AN EINER BEHEIZTEN GENEIGTEN 
PLATTE 

Znsammenfw Die Yih-Benjamin-Analysis tiber die Stabilitat eines Fltissigkeitsfihns, der an einer 
geneigten Wand herabfliesst, wird fiir kleine Stiirungen der F&&e erweitert, um den Einfluss von Verdamp- 
fung und Kondensation zu beriicksichtigen. Verdampfung zerstiirt den Film. An senkrechten WBnden 
wird demnach bei jeder Reynolds-Zahl die St&mung beim Aufbeizen instabil, w&rend bei Kiihlung eine 
kritische Reynolds-Zahl auftritt. Oberhalb einer kritischen Wlrmestromdichte nimmt die Zest fiir die 
Entwicklung einer Storstelle mit der vierten Potenz des Verdampfungsverhiiltnisscs ab. 
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YCTO%iYBBOCTb I-iOTOKA XXEIIAKOCTEI HA HArPETOt? 
HAKJIOHHOB l-IJIOCKOCTH 

Anmraqm-MeTon ~U-Be~maMUHa~asaaasUaaycTo~sU~ocTUnpUman~x~o8my~e~U~x 

Ha noBepxHocTU TOHHO~~ nneHKU H(U~KOCTU,cTeKatO~e~ no HaKnonHoii cTeHKe,o606n(aeTcfi 

wff yqeTa BmmU~ UcnapeHm Um KoK~ericaqUu. HcnapeHUe HapymaeT ycroltwfBocTb 

IlJIeHKU. TaKUw o6paaonr,B CJIyqae BepTUKaJlbHbIX CTeHOK IlpU Hal'peBaHUU nOTOK HBJlHeTCII 

HeCTaqUoHapHbw npU nro6rax wmmx PeltHonbnca, a npa OxnamfieHUU nOHBmeTCri KPUTU- 

qeCKOe 'IUCJIO PetHOJlb~Ca. Bnlue 8Ha9eHUfI KpUTU'ieCKOrO TenJfOBOl'O nOTOKa paCCYUTaHHOe 

BpeMR, Ueo6xo~Umoe XJlfi nO~BJleHUJ3 TOHKUX n#ITeH, YMeHbIIlaeTCfi npOnOpl$UOHaJlbHO 

qeTBepTOt CTeneHU CKOpOCTU UCnapeHUH. 


